READING-NOTE

View on GitHub

pandas

10 minutes to pandas¶

Customarily, we import as follows:

import numpy as np

import pandas as pd

Object creation

See the Data Structure Intro section.

Creating a Series by passing a list of values, letting pandas create a default integer index:

s = pd.Series([1, 3, 5, np.nan, 6, 8])

s
Out[4]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

# Creating a DataFrame by passing a NumPy array, with a datetime index and labeled columns:

dates = pd.date_range("20130101", periods=6)

dates
Out[6]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD"))
df
Out[8]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

# Creating a DataFrame by passing a dict of objects that can be converted to series-like.

df2 = pd.DataFrame(
    {
        "A": 1.0,
        "B": pd.Timestamp("20130102"),
        "C": pd.Series(1, index=list(range(4)), dtype="float32"),
        "D": np.array([3] * 4, dtype="int32"),
        "E": pd.Categorical(["test", "train", "test", "train"]),
        "F": "foo",
    }
)

df2
Out[10]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo
The columns of the resulting DataFrame have different dtypes.

df2.dtypes
Out[11]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

# If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:
df2.<TAB>  # noqa: E225, E999
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix         df2.clip
df2.add_suffix         df2.columns
df2.align              df2.copy
df2.all                df2.count
df2.any                df2.combine
df2.append             df2.D
df2.apply              df2.describe
df2.applymap           df2.diff
df2.B                  df2.duplicated

# As you can see, the columns A, B, C, and D are automatically tab completed. E and F are there as well; the rest of the attributes have been truncated for brevity.
Viewing data
See the Basics section.

Here is how to view the top and bottom rows of the frame:

df.head()
Out[13]: 
                   A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

df.tail(3)
Out[14]: 
                   A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
Display the index, columns:

df.index
Out[15]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
              dtype='datetime64[ns]', freq='D')

df.columns

Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

# DataFrame.to_numpy() gives a NumPy representation of the underlying data. Note that this can be an expensive operation when your DataFrame has columns with different data types, which comes down to a fundamental difference between pandas and NumPy: NumPy arrays have one dtype for the entire array, while pandas DataFrames have one dtype per column. When you call DataFrame.to_numpy(), pandas will find the NumPy dtype that can hold all of the dtypes in the DataFrame. This may end up being object, which requires casting every value to a Python object.

py df.to_numpy() Out[17]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])

df2.to_numpy() Out[18]: array([[1.0, Timestamp(‘2013-01-02 00:00:00’), 1.0, 3, ‘test’, ‘foo’], [1.0, Timestamp(‘2013-01-02 00:00:00’), 1.0, 3, ‘train’, ‘foo’], [1.0, Timestamp(‘2013-01-02 00:00:00’), 1.0, 3, ‘test’, ‘foo’], [1.0, Timestamp(‘2013-01-02 00:00:00’), 1.0, 3, ‘train’, ‘foo’]], dtype=object) Note

DataFrame.to_numpy() does not include the index or column labels in the output.

describe() shows a quick statistic summary of your data:

df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804 Transposing your data:

df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988 Sorting by an axis:

df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690 Sorting by values:

df.sort_values(by=”B”) Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 Selection Note

While standard Python / NumPy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc and .iloc.

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing.

Getting

Selecting a single column, which yields a Series, equivalent to df.A:

df[“A”] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64 Selecting via [], which slices the rows.

df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

df[“20130102”:”20130104”] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

Selection by label

See more in Selection by Label.

For getting a cross section using a label:

df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632

Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label:

df.loc[:, [“A”, “B”]] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648

Showing label slicing, both endpoints are included:

df.loc[“20130102”:”20130104”, [“A”, “B”]] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771

Reduction in the dimensions of the returned object:

df.loc[“20130102”, [“A”, “B”]] Out[29]: A 1.212112 B -0.173215

Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value:

df.loc[dates[0], “A”] Out[30]: 0.4691122999071863

For getting fast access to a scalar (equivalent to the prior method):

df.at[dates[0], “A”] Out[31]: 0.4691122999071863

Selection by position

See more in Selection by Position.

Select via the position of the passed integers:

df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64 By integer slices, acting similar to NumPy/Python:

df.iloc[3:5, 0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020

By lists of integer position locations, similar to the NumPy/Python style:

df.iloc[[1, 2, 4], [0, 2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232 For slicing rows explicitly:

df.iloc[1:3, :] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 For slicing columns explicitly:

df.iloc[:, 1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427 For getting a value explicitly:

df.iloc[1, 1] Out[37]: -0.17321464905330858

For getting fast access to a scalar (equivalent to the prior method):

df.iat[1, 1] Out[38]: -0.17321464905330858

Boolean indexing

Using a single column’s values to select data.

df[df[“A”] > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860

Selecting values from a DataFrame where a # boolean condition is met.

df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988 Using the isin() method for filtering:

df2 = df.copy()

df2[“E”] = [“one”, “one”, “two”, “three”, “four”, “three”]

df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

df2[df2[“E”].isin([“two”, “four”])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four Setting Setting a new column automatically aligns the data by the indexes.

s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range(“20130102”, periods=6))

s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64

df[“F”] = s1 Setting values by label:

df.at[dates[0], “A”] = 0 Setting values by position:

df.iat[0, 1] = 0 Setting by assigning with a NumPy array:

df.loc[:, “D”] = np.array([5] * len(df)) The result of the prior setting operations.

df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0 A where operation with setting.

df2 = df.copy()

df2[df2 > 0] = -df2

df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

Missing data

pandas primarily uses the value np.nan to represent missing data. It is by default not included in computations. See the Missing Data section.

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + [“E”])

df1.loc[dates[0] : dates[1], “E”] = 1

df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN To drop any rows that have missing data.

df1.dropna(how=”any”) Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 Filling missing data.

df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0 To get the boolean mask where values are nan.

pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True

Operations

See the Basic section on Binary Ops.

Stats

Operations in general exclude missing data.

Performing a descriptive statistic:

df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64 Same operation on the other axis:

df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64

df.sub(s, axis=”index”) Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN Apply Applying functions to the data:

df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0

df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64

Histogramming

See more at Histogramming and Discretization.

s = pd.Series(np.random.randint(0, 7, size=10))

s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64

s.value_counts() Out[70]: 4 5 2 2 6 2 1 1 dtype: int64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

s = pd.Series([“A”, “B”, “C”, “Aaba”, “Baca”, np.nan, “CABA”, “dog”, “cat”])

s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object

Merge Concat

pandas provides various facilities for easily combining together Series and DataFrame objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section.

Concatenating pandas objects together with concat():

df = pd.DataFrame(np.random.randn(10, 4))

df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495

break it into pieces

pieces = [df[:3], df[3:7], df[7:]]

pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495

Note

Adding a column to a DataFrame is relatively fast. However, adding a row requires a copy, and may be expensive. We recommend passing a pre-built list of records to the DataFrame constructor instead of building a DataFrame by iteratively appending records to it. See Appending to dataframe for more.

Join

SQL style merges. See the Database style joining section.

left = pd.DataFrame({“key”: [“foo”, “foo”], “lval”: [1, 2]})

right = pd.DataFrame({“key”: [“foo”, “foo”], “rval”: [4, 5]})

left Out[79]: key lval 0 foo 1 1 foo 2

right Out[80]: key rval 0 foo 4 1 foo 5

pd.merge(left, right, on=”key”) Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5

Another example that can be given is:

left = pd.DataFrame({“key”: [“foo”, “bar”], “lval”: [1, 2]})

right = pd.DataFrame({“key”: [“foo”, “bar”], “rval”: [4, 5]})

left Out[84]: key lval 0 foo 1 1 bar 2

right Out[85]: key rval 0 foo 4 1 bar 5

pd.merge(left, right, on=”key”) Out[86]: key lval rval 0 foo 1 4 1 bar 2 5

Grouping

By “group by” we are referring to a process involving one or more of the following steps:

Splitting the data into groups based on some criteria

Applying a function to each group independently

Combining the results into a data structure

See the Grouping section.

df = pd.DataFrame( { “A”: [“foo”, “bar”, “foo”, “bar”, “foo”, “bar”, “foo”, “foo”], “B”: [“one”, “one”, “two”, “three”, “two”, “two”, “one”, “three”], “C”: np.random.randn(8), “D”: np.random.randn(8), } )

df Out[88]: A B C D 0 foo one 1.346061 -1.577585 1 bar one 1.511763 0.396823 2 foo two 1.627081 -0.105381 3 bar three -0.990582 -0.532532 4 foo two -0.441652 1.453749 5 bar two 1.211526 1.208843 6 foo one 0.268520 -0.080952 7 foo three 0.024580 -0.264610 Grouping and then applying the sum() function to the resulting groups.

df.groupby(“A”).sum() Out[89]: C D A
bar 1.732707 1.073134 foo 2.824590 -0.574779

Grouping by multiple columns forms a hierarchical index, and again we can apply the sum() function.

df.groupby([“A”, “B”]).sum() Out[90]: C D A B
bar one 1.511763 0.396823 three -0.990582 -0.532532 two 1.211526 1.208843 foo one 1.614581 -1.658537 three 0.024580 -0.264610 two 1.185429 1.348368 Reshaping See the sections on Hierarchical Indexing and Reshaping.

Stack tuples = list( zip( *[ [“bar”, “bar”, “baz”, “baz”, “foo”, “foo”, “qux”, “qux”], [“one”, “two”, “one”, “two”, “one”, “two”, “one”, “two”], ] ) )

index = pd.MultiIndex.from_tuples(tuples, names=[“first”, “second”])

df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=[“A”, “B”])

df2 = df[:4]

df2 Out[95]: A B first second
bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431 The stack() method “compresses” a level in the DataFrame’s columns.

stacked = df2.stack()

stacked Out[97]: first second
bar one A -0.727965 B -0.589346 two A 0.339969 B -0.693205 baz one A -0.339355 B 0.593616 two A 0.884345 B 1.591431 dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

stacked.unstack() Out[98]: A B first second
bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431

stacked.unstack(1) Out[99]: second one two first
bar A -0.727965 0.339969 B -0.589346 -0.693205 baz A -0.339355 0.884345 B 0.593616 1.591431

stacked.unstack(0) Out[100]: first bar baz second
one A -0.727965 -0.339355 B -0.589346 0.593616 two A 0.339969 0.884345 B -0.693205 1.591431

Pivot tables

See the section on Pivot Tables.

df = pd.DataFrame( { “A”: [“one”, “one”, “two”, “three”] * 3, “B”: [“A”, “B”, “C”] * 4, “C”: [“foo”, “foo”, “foo”, “bar”, “bar”, “bar”] * 2, “D”: np.random.randn(12), “E”: np.random.randn(12), } )

df Out[102]: A B C D E 0 one A foo -1.202872 0.047609 1 one B foo -1.814470 -0.136473 2 two C foo 1.018601 -0.561757 3 three A bar -0.595447 -1.623033 4 one B bar 1.395433 0.029399 5 one C bar -0.392670 -0.542108 6 two A foo 0.007207 0.282696 7 three B foo 1.928123 -0.087302 8 one C foo -0.055224 -1.575170 9 one A bar 2.395985 1.771208 10 two B bar 1.552825 0.816482 11 three C bar 0.166599 1.100230

We can produce pivot tables from this data very easily:

pd.pivot_table(df, values=”D”, index=[“A”, “B”], columns=[“C”]) Out[103]: C bar foo A B
one A 2.395985 -1.202872 B 1.395433 -1.814470 C -0.392670 -0.055224 three A -0.595447 NaN B NaN 1.928123 C 0.166599 NaN two A NaN 0.007207 B 1.552825 NaN C NaN 1.018601

Time series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section.

rng = pd.date_range(“1/1/2012”, periods=100, freq=”S”)

ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

ts.resample(“5Min”).sum() Out[106]: 2012-01-01 24182 Freq: 5T, dtype: int64 Time zone representation:

rng = pd.date_range(“3/6/2012 00:00”, periods=5, freq=”D”)

ts = pd.Series(np.random.randn(len(rng)), rng)

ts Out[109]: 2012-03-06 1.857704 2012-03-07 -1.193545 2012-03-08 0.677510 2012-03-09 -0.153931 2012-03-10 0.520091 Freq: D, dtype: float64

ts_utc = ts.tz_localize(“UTC”)

ts_utc Out[111]: 2012-03-06 00:00:00+00:00 1.857704 2012-03-07 00:00:00+00:00 -1.193545 2012-03-08 00:00:00+00:00 0.677510 2012-03-09 00:00:00+00:00 -0.153931 2012-03-10 00:00:00+00:00 0.520091 Freq: D, dtype: float64 Converting to another time zone:

ts_utc.tz_convert(“US/Eastern”) Out[112]: 2012-03-05 19:00:00-05:00 1.857704 2012-03-06 19:00:00-05:00 -1.193545 2012-03-07 19:00:00-05:00 0.677510 2012-03-08 19:00:00-05:00 -0.153931 2012-03-09 19:00:00-05:00 0.520091 Freq: D, dtype: float64 Converting between time span representations:

rng = pd.date_range(“1/1/2012”, periods=5, freq=”M”)

ts = pd.Series(np.random.randn(len(rng)), index=rng)

ts Out[115]: 2012-01-31 -1.475051 2012-02-29 0.722570 2012-03-31 -0.322646 2012-04-30 -1.601631 2012-05-31 0.778033 Freq: M, dtype: float64

ps = ts.to_period()

ps Out[117]: 2012-01 -1.475051 2012-02 0.722570 2012-03 -0.322646 2012-04 -1.601631 2012-05 0.778033 Freq: M, dtype: float64

ps.to_timestamp() Out[118]: 2012-01-01 -1.475051 2012-02-01 0.722570 2012-03-01 -0.322646 2012-04-01 -1.601631 2012-05-01 0.778033 Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

prng = pd.period_range(“1990Q1”, “2000Q4”, freq=”Q-NOV”)

ts = pd.Series(np.random.randn(len(prng)), prng)

ts.index = (prng.asfreq(“M”, “e”) + 1).asfreq(“H”, “s”) + 9

ts.head() Out[122]: 1990-03-01 09:00 -0.289342 1990-06-01 09:00 0.233141 1990-09-01 09:00 -0.223540 1990-12-01 09:00 0.542054 1991-03-01 09:00 -0.688585 Freq: H, dtype: float64

Categoricals

pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.

df = pd.DataFrame( {“id”: [1, 2, 3, 4, 5, 6], “raw_grade”: [“a”, “b”, “b”, “a”, “a”, “e”]} )

Convert the raw grades to a categorical data type.

df[“grade”] = df[“raw_grade”].astype(“category”)

df[“grade”] Out[125]: 0 a 1 b 2 b 3 a 4 a 5 e

Name: grade, dtype: category Categories (3, object): [‘a’, ‘b’, ‘e’]

Rename the categories to more meaningful names (assigning to Series.cat.categories() is in place!).

df[“grade”].cat.categories = [“very good”, “good”, “very bad”]

Reorder the categories and simultaneously add the missing categories (methods under Series.cat() return a new Series by default).

df[“grade”] = df[“grade”].cat.set_categories( [“very bad”, “bad”, “medium”, “good”, “very good”] )

df[“grade”] Out[128]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [‘very bad’, ‘bad’, ‘medium’, ‘good’, ‘very good’] Sorting is per order in the categories, not lexical order.

df.sort_values(by=”grade”) Out[129]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good Grouping by a categorical column also shows empty categories.

df.groupby(“grade”).size() Out[130]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64

Plotting

See the Plotting docs.

We use the standard convention for referencing the matplotlib API:

import matplotlib.pyplot as plt

plt.close(“all”) The close() method is used to close a figure window.

ts = pd.Series(np.random.randn(1000), index=pd.date_range(“1/1/2000”, periods=1000))

ts = ts.cumsum()

ts.plot();